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A widely used model in the "eld of hysteretic or memory-dependent vibrations is that of
Bouc and Wen. Di!erent parameter values extend its use to various areas of mechanical
vibrations. As a consequence an identi"cation method is required to identify the parameter
values relevant to its application. Its structure, however, includes internal states and
non-linear terms. This rules out the conventional identi"cation methods, such as least
squares and maximum likelihood because they require derivative calculations of the
prediction error with respect to the parameters. In this paper are presented some results for
Bouc}Wen model identi"cation, using simulated noise-free data, simulated noisy data and
experimental data obtained from a nuclear power plant. The method used to achieve this is
the di!erential evolution algorithm. Di!erential evolution (DE) is an optimization method
developed to perform direct search in a continuous parameter space without requiring any
derivative estimation.

( 2001 Academic Press
1. INTRODUCTION

Hysteretic or memory-dependent phenomena are observed in many areas such as
magnetism, electricity, material, phase transitions and elasto-plasticity of solids [1]. In
mechanical vibrations, the elasto-plasticity of some vibrating components introduces
non-linearities which can be identi"ed as of hysteretic type. A model, which describes
accurately many random non-linear vibrations of the above type, is the Bouc}Wen model.
In the context of the forced single-degree-of-freedom oscillator of equation (1) z is the
hysteretic restoring force.

mxK#cxR #kx#z"f (t) , (1)

where m, c and k are the mass, damping and spring coe$cients respectively. The hysteretic
restoring force z is given by the Bouc}Wen model of

zR"!aDxR Dzn!bDzn DxR #AxR , n odd,

zR"!aDxR Dzn~1Dz D!bxR zn#AxR , n even. (2)
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The model was "rstly introduced by Bouc in its rudimentary form with n equal to unity
[2]. This was able to describe the hysteresis loop peculiar to the relationship between the
restoring force, z, and displacement, x. The parameters a and b govern the shape of the loop.
Wen generalized the Bouc equation to its "nal form by introducing the parameter n as given
in equation (2) [3]. This parameter controls the smoothness of the hysteresis loop. The
parameter A contributes to the linear sti!ness of the oscillator.

Owing to the versatility of this model to represent various shapes of hysteresis loops, it
has attracted much attention in the area of hysteretic vibrations. As a consequence the
model is studied for various parameter sets in order to "t in di!erent applications.
Therefore, a need emerges to identify the parameters for each di!erent case.

In this article, "rst, a literature survey of the aspects related to the identi"cation of
systems with hysteresis is presented followed by a presentation of the most commonly
available parameter estimation methods with their rationale. This leads to the indication
that certain classes of these methods are unable to be used in identi"cation tasks similar to
the one presented in this paper.

Afterwards, a relatively new method, based on DE is presented and proposed for the
parameter estimation of the Bouc}Wen model. Finally, this paper concludes with the
presentation of identi"cation results using the DE on simulated noise-free data, on
simulated noisy data and on experimental data. A discussion of these results is given along
with their presentation.

2. LITERATURE SURVEY

2.1. GENERAL DESCRIPTION OF THE BOUC}WEN MODEL AND PARAMETERS EFFECT

The Bouc}Wen model is capable of producing di!erent hysteretic behaviours and is also
amenable to random vibration analysis. These tests dictate the two major paths research
over the years has followed: one of them is that of the parameter identi"cation and the other
one is the analytical determination of the response of the Bouc}Wen model to random
excitations for various parameter sets. This is related to aspects of random process theory.

As has been already mentioned, Bouc [2] introduced the model of equation (2) for n"1
in order to model random hysteretic vibrations. Ten years later, Wen [3] generalized this to
the form in equation (2). In the same paper, Wen went on and presented some typical
hysteretic loops that the model produces, for the case of n"1. In addition, he showed some
initial loading paths of the model and that for n"R when it represents an ideal
elastic}plastic system. Then, relying on the fact that an input of independent arriving pulses
(shot noise) to a system causes the system to respond with a Markov random process, he
used the Fokker}Planck [4] equation to estimate the probability that a particular response
vector will occur. Consequently, he used the Galerkin procedure to obtain the solution of
the Fokker}Planck equation for both the stationary and non-stationary cases. He
concluded his article by showing some comparative results obtained from a Monte Carlo
simulation.

Brie#y, equivalent linearization is the procedure of obtaining a linear system that will
provide a response close to that of the studied non-linear system. The inadequacy of the
Krylov}Brogoliubov method of equivalent linearization of wideband models, led Wen [5]
to propose a new method of doing this. The technique he used, substitutes the third order
non-linear system of equations (1) and (2) with a linear third order system whose parameters
are obtained from the minimization of the mean-square error. This method can easily be
extended to multi-degree-of-freedom systems. As he did with his previous paper he went on
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and applied this method to the model with certain parameter values and then compared the
results with Monte Carlo simulation. In addition, in this paper he "nalized the proposal
made in his previous paper [3] by re-modifying the Bouc}Wen model to take into account
the post-yield sti!ness. He actually introduced the parameter v as shown in equation (3),
to represent the ratio of prior to post-yield sti!ness. Equation (3) represents
a single-degree-of-freedom system with m, c and k representing the corresponding mass,
damping and sti!ness and z the hysteretic force.

mxK#cxR #vkx#(1!v)z"f. (3)

Pivovarov and Vinogradov [6] in their paper expressed the Bouc model, i.e., n"1, in stress
and strain terms in order to describe the constitutive relation of a dry friction damper,
namely the Stockbridge damper. Without analyzing in detail the e!ect of the parameters on
the hysteretic loops they used equivalent linearization techniques to obtain the backbone
curves. The backbone curves chart the deviation of the non-linear resonance frequencies
from the linear one as the amplitude excitation increases. Then, using these curves they
identi"ed parameter values to represent their experimental data. They concluded that the
parameter a is associated with the resonance of the overall system and b with the
non-linearities. They did not mention the e!ect of the sum of these two parameters and how
their relative values a!ect the dynamics.

2.2. IDENTIFICATION

2.2.1. Non-parametric

Non-parametric system identi"cation means that an experimental response of a system,
to an input, can be identi"ed with a particular model response to the same input. For
example, the presence of non-linearity will introduce behaviours such as subharmonics,
superharmonics, resonance frequency shifts and chaos. If a particular model is known to
produce such e!ects then it can be used to give an identity to certain experimental data that
entail the same behaviour. Therefore, the essence is not on the parameters of the equations
of motion but on the actual response of the system.

Lo et al. [7] used a method relying on deconvolution to estimate the non-linear hysteretic
force z from experimental records. Afterwards they used a method similar to the restoring
surface method, reference [18], to plot a corresponding surface of the estimated force z.
They stressed the importance of the selection of the appropriate independent variables over
which the surface will be drawn. This is because hysteretic systems are multi-valued
response systems and the common restoring force method fails for such systems. They
suggested to draw the surface of zR versus xR and z. It is obvious that the nature of the surface
is determined by the non-linear function of dz/dx. A polynomial "t to this surface at the end
will reveal the parameters associated with the given experimental records. Afterwards they
quoted how the parameter combinations of a and b for n"1 govern the hardening or
softening of the particular system. Finally, they applied this method to identify the
parameters and simulate better a friction-type isolator.

This surface method implies that if an estimation of the non-linear force z is achieved by
deconvolution, then it should be possible to identify the parameter n from the polynomial
shape the surface dz/dx is supposed to have.

Wong et al. [9] studied the multi-harmonic steady state oscillation of the Bouc}Wen
model. They used the Galerkin}Levenberg}Marguard method to obtain frequency
response functions from swept sine waves. They found that superharmonic frequencies
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occur always in the Bouc}Wen model's response to periodic forcing. Then they went on to
quote that in the cases of subharmonic resonances, a chaotic behaviour is associated.
Finally, they reported that during non-zero mean periodic input, the response is non-zero
mean as well.

In their companion paper [10] they performed a similar dynamic analysis over "ve
di!erent hysteresis loops obtained by appropriate parameter values. They studied how the
superharmonics are a!ected by the parameters' values. Afterwards they showed how the
Bouc}Wen model is used as a constitutive equation for components with plasticity in
a similar way as in reference [6]. Finally, they inspected for role of v (equation (3)) in the
constitutive equation of stress and strain and they found that for v'0 the hysteresis loop
depends on stress and strain as well.

2.2.2. Parametric

Parametric identi"cation puts the importance on the parameters of the equation of
motion and aims to identify their values from experimental records. In order to ensure
success in the identi"cation of the values of the parameter of a certain model, its parameters
should be identi"able in the sense that two di!erent parameter vectors give two di!erent
responses.

Andronikou et al. [11] discussed the concept of identi"ability of hysteretic systems. The
main line of their approach was to prove that there are equivalent linear and non-linear
systems that are identi"able in the sense of the "rst paragraph for systems with bilinear
hysteresis. After they proved the existence of those models they went on to demonstrate the
conditions of the identi"ability for the equivalent systems. They "nalized their paper by
presenting and proving a theorem, which says that once the equivalent linear and
non-linear systems are identi"able then the original hysteretic bilinear system is identi"able
as well. This result is a su$cient condition for a hysteretic bilinear system to be identi"able
but not necessary, since the opposite is not proved, i.e., if a hysteretic bilinear system is
identi"able there exists a linear or non-linear equivalent model that is identi"able as well.

The fact that the Bouc}Wen model can be equivalently linearized might be able to
provide the su$cient condition required for identi"ability. In addition, the circumstance,
under which the Bouc}Wen model represent bilinear hysteresis, strengthens even more the
case that its parameters are identi"able.

Sues et al. [12] obtained the hysteretic force z numerically and then used it to formulate
an error sequence. They carried on and obtained estimated parameters using the
least-squares method. The availability of z renders the error equation di!erentiable and the
solution of normal equation direct.

Yar and Hammond [13] used the Gauss}Newton iterative method to solve the normal
equations derived from their formulation of the least-squares problem. They, then relying
on their error formulation, gave a theorem about the asymptotic properties of the sampling
of the estimates. Also, from this point of view they discussed the identi"ability of the
parameters. Afterwards, they presented simulated results together with the variance and
covariance of the estimates. They also quoted the importance of input level to certain
parameters.

Masri et al. [14] presented an adaptive method to identify Bouc}Wen's model once
experimental data are available on-line. This has been achieved by using neural networks
through a specially designed adaptive law. In the same paper, they presented simulated and
experimental results together with model validation.

Andronikou et al. [15] as a successor to the paper [11] about the identi"ability of
hysteretic systems used a random method to search directly the parameter space in order to
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identify their proposed models of bilinear hysteresis. They also stress that the success of
identifying the parameters is very much dependent on the input level.

In the same tenor, Deacon and Worden [16] apply genetic algorithms to search the
parameter space of the Bouc}Wen model. They showed simulated results for the case of
constant n. In addition, they presented a picture of "tness landscape for the parameters
a and b.

3. PARAMETER ESTIMATION METHODS

Generally, the aim of every model is to predict the relevant experimental observed data.
In this case, it is assumed that the Bouc}Wen model (2) in connection with the model of
one-degree-of-freedom oscillator (1) predicts the experimentally observed hysteretic
acceleration time histories xK (t). Di!erent parameter sets P

1
produce various models which in

turn give di!erent predictions of time histories xKK (t DP
1
).

In order to assess the goodness of the prediction the di!erence between the predicted
output xKK (t DP

1
) and the reference experimental xK (t) output is used. Hence, a prediction error

or cost can be de"ned [17, 18] as

e (t)"xK (t)!xKK (t DP
1
). (4)

The prediction error e de"ned in equation (4) can serve as a means of comparison between
di!erent models. A selection of model for which the sequence of the prediction errors
becomes as small as possible is the aim of parameter identi"cation methods.

Over the years, several methods have been developed to select the best possible model.
The ones extensively used are mentioned here with their rationale. The least-squares
method "nds the smallest possible sequence of error by trying to minimize a scalar measure
[19]

OF"

1

n

n
+
i/1

(xK (i)!xKK (i DP
1
))2, (5)

where n is the number of data points.
By taking the derivatives of equation (5) with respect to the parameters and equating

them to zero one arrives at a set of n equations with n
p

unknowns (n
p

is the number of
parameters). Their solution gives the required parameter values. Suppose that prediction
error (4) has a conditional probability density function depending on time t, parameter set
P
1
, and the input. In addition, assume that there are no equation disturbances. This

assumption renders the prediction errors independent for two di!erent time instants [17].
Assuming that the probability density function (PDF) for an individual instant is given by
an arbitrary function g, the joint probability density function for all the error values is given
by

JPDF"

n
<
i/1

g (xK (i)!xK K (i DP
1
)). (6)

The value of this function gives the probability that the output xKK (t DP
1
) of the model at t is the

output of the system. If one refers to the parameter vector P
1
, equation (6) is known as the

likelihood of the parameter vector to give a model that replicates the system output. This
function therefore, needs to be a maximum in order to give a suitable estimate of the
parameter vector. Hence, the parameter vector which maximizes equation (6) is called the
maximum likelihood estimate.
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Finally, the prediction error sequence e (t) can be made small when a parameter estimate
P
1

gives a sequence that is not correlated with another sequence f(t) containing information
relevant to the identi"ed system. Generally, this is formulated as

1

N

N
+
i/1

e(t DP
1
)fT (t)"0. (7)

The solution of equation (6) with respect to P
1

gives the required parameter estimate P
1
) .

Intuitively, this means that the predictors xKK (t DP1 ) utilize all the information at time t,
rendering the prediction error independent of the system information contained in f (t). The
sequence f (t) contains the instruments to obtain P

1
) and the method is known as the

instrumental variable method.
The above methods work well when the system is linear in the parameters and therefore

analytic in them. This is because they require the calculation of the derivatives of the
objective function with respect to the parameters. In such cases, the complexity only
increases with the number of parameters to be identi"ed, as the linearity ensures quadratic
objective functions. The continuity ensures the existence of the derivatives.

For non-linear in the parameters systems the resulting error equations, as discussed above,
are non-linear. This means that the objective functions are not quadratic, possessing a single
global minimum; the necessary and su$cient conditions for the existence of minimum can
be satis"ed for various parameter sets [20]. This results in local minima which in turn might
attract the solution into one of them depending on the starting position. Non-linearity also
makes it necessary to use iterative schemes, which collect local gradient information or
a Hessian matrix. In cases, however, of discontinuous types of non-linearity or/and
unobservable states, estimation of the gradients or the Hessian matrix is not feasible.

In such cases a di!erent approach should be sought that does not require any derivative
calculations. These methods can be classi"ed as heuristic or direct search since they rely on
the objective function evaluations only. In the literature there are many such methods
available such as in the Nelder and Mead downhill simplex [21], genetic algorithms and
simulated annealing [20]. The nature of the Bouc}Wen model, however, dictates a more
robust and at the same time reliable and fast algorithm. The Nelder and Mead method
performs well locally but is trapped in local minima easily. When simulated annealing is
incorporated in the Nelder and Mead method on similar optimization tasks as those in this
paper, it does not improve much [22]. Genetic algorithms are designed to work on
a discrete parameter space [23, 24]. In this case, any attempt to discretize parameters can
only increase the complexity of the problem. Hence, for this study an optimization
algorithm was sought which is capable of utilizing concepts borrowed from genetic
algorithms and the Nelder and Mead method and exploits their strengths. This is found in
the di!erential evolution algorithm [22, 25], which uses the concept of the Nelder and
Mead method of acquiring information from within a vector population combined with
evolutionary methods similar to those of genetic algorithms [23, 24]. A more detailed
description of di!erential evolution follows.

4. DIFFERENTIAL EVOLUTION

DE is basically very similar to conventional genetic algorithms (GAs). The di!erences are
in the way the mechanisms of mutation and crossover are performed using real #oating
point numbers instead of long strings of zeros and ones. The following is a brief description
of the DE method.
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In comparison with GAs the basic di!erence lies in the scheme for generating trial
parameter vectors [22, 25]. The importance of the term-trial parameter vector will be evident
in the following paragraphs. Figure 1 shows schematically the basic operations of the DE
working on optimization of a hypothetical single-degree-of-freedom system. The parameter
vectors are composed of the three well-known parameters: mass (M), damping (C) and
spring (K).

The algorithm starts with an initial pool of 15 three-dimensional vectors drawn from
uniform probability distributions. The uniform probability density ensures that the
Figure 1. An iteration of di!erential evolution.
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parameter vectors generated will span the space equally. The initial pool acts as the initial
generation from which the whole operation of evolution starts.

DE mutates (perturbs) a randomly selected member P
p

of the featured generation with
vector di+erentials as demonstrated for the two-dimensional case in Figure 2. Each
di!erential is the di!erence, between two randomly selected vectors (P

a
and P

b
), scaled with

a parameter F. P
a

and P
b

should not be either the target vector P
t
or the selected for

mutation vector P
p
. This process generates a new mutated vector P

m
(Figure 1).

The survival value of each gene (parameter) is numerically formed by the action of
recombination as indicated in Figure 3. DE implements this by using a series of number of
parameters (NP) binomial experiments on two vectors. These are the parents and the new
generated vector, the child. The two parents are (1) the target vector P

t
and (2) the mutated

vector P
m
. Each binomial experimental event determines the parent the child takes its genes

(parameters) from. The likelihood that governs the inheritance of the trial parameter vector
P
tr

is determined by a constant parameter designated as the crossover ratio (CR). In this
case, there are two mutually exclusive events. Event A: a speci"ed parameter is taken from
one parent with odds (CR: 1) or event B: the same parameter is taken from the other parent
with odds ((1!CR): 1) (Figure 3). It is obvious that the child cannot take a particular
parameter from both of the parents. The generating child is called the trial vector P

tr
.

Natural selection in di!erential evolution is implemented via a comparison process
between the cost of the trial vector and the cost of the target vector. The "ttest one, in this
case the one with lowest objective value, passes to the next generation. Performing this
sequence of operations on every single member of each generation, di!erential evolution
Figure 3. The crossover operation.

Figure 2. 2-d perturbation process of the di!erential evolution.
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generates a new set of 15 three-dimensional vectors. This set is simply a new generation with
improved characteristics.

Iterating the above procedure results in new "tter generations. The iteration halts when
a stopping criterion is satis"ed. Usually, this is set as either a desired objective value or
a maximum number of iterations or both.

5. THE OBJECTIVE FUNCTION

5.1. THE MEAN SQUARE ERROR (MSE)

The objective function used for this study is the mean square error. The mean square
error, for a general predicted time history xL (t) compared to the respective measured
(reference) time history x (t), can be cast in the discrete normalized form as

MSE"

100

np2
xK

n
+
i/n

(x (t)!xL (t DP
1
))2, (8)

where p2
x
K is the variance of the measured output and n the number of points in the measured

output.

5.2. OPTIMIZATION

Following the discussion above, what remains to complete the task of identifying the best
parameter set for a model structure to predict the measured data correctly is the
optimization of the criterion function. In this case, the optimization problem can be stated
as, from reference [20].

Obtain the parameter vector P
1
) which minimizes the MSE. ¹he parameter vector is subjected

to the constraint

P
1 min

)P
1
))P

1 max
. (9)

5.3. PENALTY FUNCTION

The so-called direct search optimization methods do not usually provide a mechanism to
restrict the parameters in the range de"ned by inequality (9); neither does the di!erential
evolution. However, an unconstrained optimization method can be transformed to
a constrained one using the concept of the penalty function. This function determines
a penalty to be added to the value of the MSE any time any parameter exceeds the range
limits. The penalty function selected for this case is given by equation (10). Figure 4 shows
the e!ect of the penalty function in trying to constrain the parameter in the region of 10}30.
Notice the rapid increase of the penalty as the parameter diverges from the bounds of the
range and the di!erence of the rate of change at either end. At the lower end this is higher
because the coe$cient of the square di!erence is higher.

Penalty (P
i
)"G

20((P
i(min)

!P
i
)/P

(min)
)2 for P

i
(P

i(min)
,

0 for P
i(min)

)P
i
)P

i(max)
,

20((P
i(max)

!P
i
)2/P

i(max)
)2 for P

i
'P

i(max)
.

(10)



Figure 4. The penalty function.

298 A. KYPRIANOU E¹ A¸.
6. IDENTIFICATION OF BOUC}WEN MODEL WITH SIMULATED NOISE-FREE DATA

6.1. PROBLEM FORMULATION

The single-degree-of-freedom system of equations (1) and (2) can be cast in the state space
form as follows. First, de"ne the state variables: displacement as z

1
, i.e., z

1
"x, velocity z

2
,

i.e., z
2
"xR and the hysteretic force z. A single-degree-of-freedom system with hysteresis is

now presented by equation (11). Note that the parameter n was kept constant to the value of
2, as it has been found through experimentation that this value enables the model to capture
better the dynamics of the data used in this paper.

zR
1
"z

2
, zR

2
"( f!cz

2
!z)/m, zR"!aDz

2
Dz Dz D!bz

2
z2#Az

2
. (11)

In this case, the output is considered to be the displacement z
1

and the reference output
zref
1

the response of equation (11) for the parameter vector P
1 ref

"[1 20 1)5 !1)5 6680]T.
The input force f (t) is a Gaussian random input of root mean square value of 9)92N. The
hysteretic force is non-observable and hence it has to be estimated. That is, the system
becomes non-linear in the parameter vector P

1
because some of its components are

multiplied with z which is not known as well. In addition, all the simulations are assumed to
start with zero initial conditions, as otherwise the initial conditions need to be estimated. In
this respect the mean square error (8) is expressed as

MSE (P
1
)"

100

Np2
zref1

N
+
i/1

(zref
1

!zL
1
(P
1
))2
i
. (12)

6.2. COMPUTATIONAL DETAILS

Di!erential evolution is programmed as an m-"le in Matlab] whereas the model is
developed in Simulink] . Adam's method is used as the numerical integrator [25]. The time
histories were sampled at 250 Hz giving a time step of Dt"0)004 s.

The searching range for each parameter was extended to an order of magnitude above
and below the reference value. For example the searching range for c was from 2 to 200 since
its reference value is 20. In the case in which the optimization method estimates values out
of the speci"ed range, the penalty value of equation (10) is added to the MSE.
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Each generation consisted of 30 members (P
1
) and each run was allowed to evolve to the

200th generation.

6.3. RESULTS

6.3.1. Results with range of one order of magnitude

Table 1 shows the optimization results with the parameter range being extended one
order of magnitude to either end of the true parameter vector P

1
. In Table 1, P

1 iis the optimized parameter vector and P
1 ref

the reference one. The vector with the
optimized vector with the lowest MSE is given in the column with heading P

1 LMSE
. The mean

optimized vector of over 100 runs is given in the column with P
1
)
MEAN

as heading whereas the
standard deviation of the standard deviation vector of the optimized set is given in the
column P

1
)
STD

.
The lowest MSE for these results is 0)0208%. A comparison between the hysteresis loops

and predicted displacements for the parameter vector with the lowest MSE and the
reference parameter vector is shown in the plots of Figure 5. Seeking more accurate results
the range of the parameters has been reduced. Based on Table 1 the mean and standard
deviation of the parameters de"ne a new smaller range according to

P
1
)
MEAN

!P
1
)
STD

)P
1
)
i
)P<

MEAN
*P

1
)
STD

. (13)

6.3.2. Results of the ,rst reduced range

The lowest MSE in this case is 0)0025%. A comparison between the hysteresis loops and
predicted displacements for the parameter vector with the lowest MSE and the reference
parameter vector is shown in the plots of Figure 6.

Applying equation (13) to the results of Table 2, a new smaller range can be de"ned. This
leads to more accurate results as depicted in the next section.

6.3.3. Results of the second reduced range

The results of the second reduced range are shown in Table 3.
The lowest MSE is 1)332e!10%. Note that the hysteresis loop and time histories are not

shown for this case because the optimized parameters have insigni"cant di!erence from the
reference ones. Therefore, the optimized and the reference plots are the same.
TABLE 1

Optimization results for the range of one order of magnitude

P
1 i

P
1 ref

P
1
)
LMSE

P
1
)
MEAN

P
1
)
STD

M 1 0)9915 1)0652 0)1313

C 20 20)2800 20)6660 2)0141

a 1)5 1)4210 1)8135 0)6843

b !1)5 !1)4330 !4)0760 3)5959

A 6680 6636 6964 847)20



Figure 5. Comparison of the optimized results with the reference ones for: (a) hysteretic force; (b) displacement,
key: **, reference signal; } - }, optimized signal.

Figure 6. Comparison of the optimized results with the reference ones: (a) Hysteretic force; (b) displacement, key:
**, reference signal; } - }, optimized signal.
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TABLE 2

Optimization results of the ,rst reduced range

P
1 i

P
1 ref

P
1
)
LMSE

P
1
)
MEAN

P
1
)
STD

M 1 1)0010 1)0009 0)0030

C 20 19)9500 19)9656 0)0475

a 1)5 1)4850 1)4863 0)0148

b !1)5 !1)3660 !1)4863 0)1337
A 6680 6690 6685 20)151

TABLE 3

Optimization results of the second reduced range

P
1 i

P
1 ref

P
1
)
LMSE

P
1
)
MEAN

P
1
)
STD

M 1 1)0000 1)0003 0)0016

C 20 20)0000 19)9824 0)0310

a 1)5 1)5000 1)4937 0)0094

b !1)5 !1)5000 !1)4965 0)0856

A 6680 6680 6681 8)0826
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7. NOISE STUDY

7.1. STUDY OUTLINE

A similar procedure, as for the identi"cation of the hysteresis model 11 with noise-free
simulated data, was followed for the identi"cation of the same model with simulated data
that have been corrupted by noise. For the case of output noise v(t) the reference time
history zref was obtained by direct addition of v

6
(t) on the reference displacement zref

1
of

section 6.1, i.e., the response of model (11) with parameter values P
1 ref

"[1 20 1)5
!1)5 6680]T to the excitation force. Equation (14) shows how zref

1
is corrupted by v(t),

where l represents the component of v(t) at each particular time.

zref"zref
1

#v. (14)

In this circumstance the mean-square error becomes

MSE(P
1
)"

100

Np2
zref1

N
+
i/1

(zref!zL
1
(P
1
))2
i
. (15)

The optimization was performed for di!erent levels of noise v(t). As a measure of the noise
level the percentage noise-to-signal ratio NSR, as in equation (16) was used, namely,

NSR (v(t))"(p (v(t))/p(zref
1

))100. (16)
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The noise-to-signal ratio NSR for the output error case v(t) was determined based on the
level of the standard deviation of the displacement response p(zref

1
) of model (11) for the

parameter values P
1 ref

"[1 20 1)5!1)5 6680]T.
A zero mean Gaussian of unity standard deviation (0, 1), sequence was generated in

Matlab] and then was scaled according to the NSR. Equation (17) shows how the scaling
multiplier was obtained. Note that the multiplier is just the desired noise standard
deviation.

p (v(t))"NSR(v(t))p(zref
1

)/100. (17)

The identi"cation was performed for the following levels of NSR: 0)1, 1, 10, 20, 40, 60, 80 and
100%. Those levels were chosen arbitrarily but in such a way as to scan the entire spectrum
of the noise vividness. The results obtained are shown in section 7.2 and they are discussed
in section 7.3.

7.2. RESULTS

Table 4 shows the identi"ed parameters of the models with noise applied to the output,
equation (14), at the levels mentioned in the previous section. The table shows the results of
the lowest mean square error of 20 runs. Figure 7 consists of two columns of four boxes
each. Each box contains an overlay plot of the noisy reference zref with the corresponding
optimized time history. The noise-to-signal ratio NSR, is indicated at the bottom of each
box.

7.3. DISCUSSION OF THE RESULTS

From Table 4 it can be concluded that the mean-square error, MSE, of the optimized
parameters remains lower than 1% when NSR is below 10%. In the case in which the
noise-to-signal ratio exceeds 10%, the MSE increases drastically and proportionally with
NSR level. At NSR 100% the MSE is 49)57%.

The situation discussed above is mirrored in the plots of Figure 7. It can be seen that the
optimized response for NSR levels of 20% and above is badly matched with the noisy
reference. The situation becomes even more severe at higher levels of NSR, as indicated in
the last three plots of the left column.
TABLE 4

Identi,ed results with the noise applied to the output

Reference
noise level (%) m"1 c"20 a"1)5 b"!1)5 A"6680 MSE(P

1
) ) (%)

0)1 1)00 19)99 1)50 !1)47 6685 1)54]10!4

1 0)99 19)96 1)50 !1)61 6682 0)01
10 0)99 19)90 1)50 !1)12 6701 0)98
20 0)9993 20)19 1)54 !1)41 6679 3)88
40 0)98 20)00 1)47 !2)07 6583 13)63
60 0)99 19)43 1)54 !0)95 6765 26)03
80 1)01 20)01 1)52 !2)03 6790 39)89
100 0)98 20)07 1)52 !0)66 6631 49)57



Figure 7. Overlay plots of the reference time history with the optimized one. NSR values (%): (a) 0)1; (b) 1)0;
(c) 10)0; (d) 20)0; (e) 40)0; (f) 60)0; (g) 80)0; (h) 100)0. (a) Hysteretic force and (b) displacement, key: **, reference
signal; } - }, optimized signal.
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The main objective of every identi"cation method is to identify a model that gives an
output that explains all the characteristics due to the input. When the output is corrupted
by additive noise that is not correlated to any extent with the model equations, it is obvious
that the model is not able to predict its existence simply because it is not possible to get
anything out of nothing.

On this account the optimization is based on those characteristics of the reference output
that would have shown if the noise was absent. Hence, the optimized parameter vectors will
be closer to the ones optimized in the noise-free case, i.e., the true ones as shown in Table 4.
In this way, however, at high noise levels the response of the model will be mismatched with
the reference one, yielding high optimized mean-square errors. In such a case, the e!ective
remedy is to improve the measurement process or "lter the noise.

Finally, it can be summarized that for additive output noise the identi"cation method
gives good parameter estimations at the expense of good model predictions. For the noise
added in the model equations the identi"cation method gives a model capable of accurate
predictions at the expense of good parameter estimation.

8. IDENTIFICATION WITH EXPERIMENTAL RESULTS

8.1. EXPERIMENTAL DATA

The French electricity authority (ElectriciteH de France, EDF) obtained the experimental
data used for identi"cation, from an earthquake resistance test of a nuclear power plant.
The plant underwent low-frequency seismic excitation provided by a SOPMEA input #oor.
Figure 8(a) shows a demonstration of such a test. The important part of the plant is the
response of the valve (RCV292VP MASONEILAN) identi"ed by point 5 in Figure 8(b).
Figure 8. Experimental set-up: (a) nuclear plant vibration; (b) value response (point 5); (c) oscillator model.
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In this context, the experimental data consist of the absolute seismic acceleration input
yK and the relative response acceleration u of the valve to the base; i.e., it can be modelled as
an oscillator with a movable base (Figure 8(c)). Figure 9 depicts the experimental
transmissibility curves for two di!erent inputs at two amplitude levels as shown in
Figure 10. It is obvious that for a single-degree-of-freedom system to behave in this way, it
should possess some kind of non-linearity. The curve with the lowest peak corresponds to
the high-level input, showing that the non-linearity accounts for an increase of the damping
as the level of the input increases. A slight downward shift to the resonance frequency is also
perceptible, a fact which indicates softening.

8.2. THE BEST LINEAR SYSTEMS

The equation of motion of the system in Figure 8(c) is given by equation (18) and is

uK#P
1
uR #P

2
u"!P

3
yK , (18)

where P
1
"2fu

n
(damping s~1); P

2
"u2

n
(square of the natural angular frequency (rad/s)2;

P
3
"k (a participation factor).
Assuming that the experimental transmissibility curves shown in Figure 11 are produced

from two di!erent systems, it is possible to identify the best linear system (Figure 8(c))
representing the above characteristics. This will yield additional information about the
system in terms of the parameter di!erences. For example, a system optimized with the
low-level signal will have particular damping, P

1
, and natural frequency P

2
values. Any

changes to these values after the optimization with the higher level input signal will give
indications about the nature of the non-linearity involved. The optimization results of
Table 5 were obtained.

In over 30 runs the parameter estimates did not change values before the "rst decimal
point. This is because the linearity of the model structure forces a single global minimum.
Figure 9. The time histories of the experimental inputs.



Figure 10. Frequency-domain results of linear system for experimental signal (**) and optimized signal (} } }):
(a) low-level optimization; (b) low-level experimental, high-level optimization; (c) high-level experimental, low-level
optimization; (d) high-level experimental.
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Figure 11. Experimental transmissibility curves for low seismic input (dsd) (**) and high seismic input (sdd)
(} } }).

TABLE 5

Optimized results for the best linear system (italic letters indicate the cross mean-square errors)

P
1

P
2

P
3

Mean-square
error (%)

Low amplitude 5)42 9687 1)22 12.87
(11)87) (9021) (1)51) (45)07)

High amplitude 11)87 9021 1)15 16)10
(5)42) (9687) (1)22) (41)87)
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It is obvious that there are linear systems representing the dynamics adequately for both
the cases. Although two di!erent linear models are used in order to represent data recorded
from the same experimental component, some useful conclusions can be drawn.

First, the frequency domain results were excellent for each of the inputs separately as
portrayed by the accurate match of the "rst two plots of Figure 10. On the other hand, the
last two plots of Figure 10 show that the model optimized for one input cannot represent
the dynamics of the other. This means that the linear models capture the values of natural
frequency and damping ratio correctly, as expected, for each input separately but they fail to
capture their change as the amplitude varies.

Second, the time domain predictions for the low-amplitude optimization almost overlay
the measured data in the two time intervals shown in the "rst two plots in Figure 12. For
the high-amplitude optimization there are some deviations in the interval 9}10 s shown in
the "rst two plots of Figure 13. This explains why the lower amplitude optimization gave
a mean-square error lower than the higher amplitude one. The last two plots of Figures 12
and 13 verify the observation pointed out previously; the dynamics of the system change as
the amplitude of the input varies.



Figure 12. Time-domain results for the optimized low-level linear model. The upper plots are the response of
the low-level input. The lower plots show the response of the low-level model to the high-level input. Key for traces:
**, optimized; } } }, experimental.
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The lack of a very good "t at lower amplitudes for the high-input case (Figure 13)
is an indicator of non-linearity in the system. In other words at low amplitudes
the dynamics are di!erent from those at high amplitudes. Therefore, the
parameter estimates are di!erent for the two cases. Furthermore, from Figure 13
it is obvious that the non-linearity is excited when the response is above 100 m/s2.
To elucidate this, it can be noted that between 9)08 and 9)12 s of the second
plot of Figure 13 the system is governed by the linear dynamics which possess the
lower damping ratio 5)14%. However, because of the higher amplitudes involved,
the damping estimated is higher. Therefore, the peaks at lower levels of the optimized
signal will be lower than those should be expected or, otherwise, achieved by 5)14%
damping ratio.



Figure 13. Time-domain results for the optimized high-level linear model. The "rst two plots are the response of
the high-level input. The last two plots show the response of the low-level input. Key for traces:**, optimized;
} } }, experimental.
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8.3. THE BOUC}WEN MODEL FOR THE EXPERIMENTAL DATA

To compensate for all the e!ects that result from the analysis of the previous section the
Bouc}Wen hysteretic model was used. The equations of motion are now altered as follows:

uK#g (uR , u)"!P
3
yK , g (uR , u)"P

1
uR #P

2
u#z(u), (19, 20)

zR (u)"P
4
uR !(P

5
DuR DDz Dz#P

6
uR Dz D2), (21)

where P
1
"2fu

n
, P

2
"u2

n
, P

3
"k, P

4
"A, P

5
"a and P

6
"b. The damping ratio, the

natural angular frequency and the participation factor of the oscillator are denoted by m, u
n

and k respectively. The parameters A, a and b are those associated with the Bouc}Wen
model.

8.3.1. Identi,cation with the low-level input

Using the low-level input the following parameter values gave the lowest mean-square
error: P

1
"4)767, P

2
"9457, P

3
"1)275, P

4
"487, P

5
"4)2]106 and P

6
"9]106 giving

a mean-square error (MSE) of 11)17%. The response of the system with these values of the
high input level gives an MSE of 41.10%. Comparing these values for the linear case (Table 5)



Figure 14. Frequency domain results (**, experimental; } } }, optimized) of the two-step identi"cation
method. The "rst two plots show the results of the "rst step (identi"cation using the low-level amplitude input). The
last two plots show the results of the two-step identi"cation method.
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which gave MSE 12)87% for the low-level amplitude input and 45)07% for the high-level
amplitude a marginal improvement is observed. The "rst two plots of Figure 14 show the
frequency domain results for this case. It is obvious that the curves match for the low-level
case but do not for the high-level input. Time domain results in Figure 15 indicate the same
e!ect. Therefore, the low-level input signal alone is not su$cient for experimental
identi"cation.

In an attempt to overcome the above problem the following procedure was devised:
optimize all the six parameters of equations 20}22 by using the low-level amplitude input



Figure 15. Time-domain results of the "rst step of the two-step identi"cation method. First two plots: response
to low-level input. Last two plots: response to high-level input. (**, experimental; } } }, optimized).
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signal ("rst step). This will optimize the linear part of the model and possibly some e!ects of
the non-linearity. Then start the optimization with the high-level input using as initial
population the one optimized by the low-level input, exciting in this way the non-linearity.
This will cause the non-linear parameters to be optimized and the linear ones (those
optimized "rst) to be "ne tuned. In this way, it is expected to obtain parameter estimations
for both high- and low-amplitude regimes. This leads to a two-step identi"cation method.

8.3.2. Identi,cation using the high-level input

Following the tenor of the previous paragraph, the last generation of the previous
optimization is passed as the startup generation for this input.

The results obtained are P
1
"5)83, P

2
"5677, P

3
"1)12, P

4
"487, P

5
"110]106 and

P
6
"174]106. The associated mean-square errors for these parameter values are 11)12%

for the high-level input case and 20% for the low level. There is a signi"cant improvement in



Figure 16. Time domain results of the second step of the two-step identi"cation method. First two plots:
response to low-level input. Last two plots: response to high-level input. (**, experimental; } } }, optimized).
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the mean-square error values compared with the corresponding ones from Table 5. For the
high amplitude level the error drops from 16)1 to 11)1% whereas for the low-level amplitude
case the error drops from 41)87 to 20%. The last two plots of Figures 14 and 16 show the
relevant frequency and time domain results, respectively, whereas Figure 17 depicts the
hysteresis loops caused by the two di!erent inputs.

Optimization of the low-level input signal alone gives a good "t for itself but not for the
high-level input as shown in Figure 15. This is because the low-level input signal does not
excite persistently the non-linear hysteretic state. After the failure of the "rst step to capture
the span of dynamic e!ects involved, the two-step procedure was suggested.

Thinking in terms of the parameter space it can be argued that the parameters of the
system after the "rst step are in the proper neighbourhood of the space. The linear
parameters are optimized but the non-linear ones are not. By using the high input level the
directions of the parameters shrink to a valleys in the parameter space. The optimization
algorithm then pushes the parameters towards the desired minimum.



Figure 17. Hysteretic displacement loops obtained from the optimized model.
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It can be argued that the two-step procedure is more reliable. The e!ect of increasing the
damping is captured as the amplitude increases as well as the frequency shift. This is because
the hysteresis, shown in Figure 17, is stronger for higher inputs.

9. CONCLUSIONS

Identi"cation of the Bouc}Wen parameters using simulated data gave excellent results.
The di!erential evolution identi"ed successfully the global minimum de"ned by the
reference parameter vector. The perfect match of the time histories of the reference and
identi"ed parameter vectors validates the statement that the di!erential evolution identi"ed
the global minimum.

For both the experimental data sets, excellent linear models can be identi"ed which
capture the frequencies and damping at the individual amplitudes. However, linear models
cannot capture the change of the dynamics as the amplitude changes. The Bouc}Wen model
was used to capture this e!ect. The failure of the low amplitude level input to identify
parameters that give accurate prediction for the high amplitude level input also forced the
de"nition of the two-step procedure. This procedure reduced signi"cantly the cross
mean-square errors, giving acceptable responses for both amplitude levels as shown in
Figure 17. The relatively high mean-square errors can be ascribed to the fact that the
response of the model at some time instants mismatches the experimental response mainly
because of the noise. In addition, there might exist dynamics that left unmodelled something
that the high values of the parameters P

5
and P

6
suggest. Finally, Figure 17 indicates that

the hysteretic e!ect is substantial.
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